\Ch

NAVAL
POSTGRADUATE
SCHOOL

MONTERLEY, CALIFORNIA

THESIS

USING ACTIVE NETWORKING TO DETECT AND
TROUBLESHOOT ISSUES IN TACTICAL DATA
NETWORKS

by
Kevin McMullen

June 2014

Thesis Co-Advisors: Dennis Volpano
Raymond Buettner

Approved for public release; distribution is unlimited




THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
06-20-2014 Master’s Thesis MM-DD-YYYY to MM-DD-YYYY

4. TITLE AND SUBTITLE

USING ACTIVE NETWORKING TO DETECT AND TROUBLESHOOT ISSUES IN
TACTICAL DATA NETWORKS

5. FUNDING NUMBERS

6. AUTHOR(S)
Kevin McMullen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Naval Postgraduate School

Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Troubleshooting in tactical data networks is often performed with a common toolset of programs, such as ping, traceroute, and proto-
cols such as Simple Network Management Protocol. The assumption with such tools and protocols is that the logical configuration of
the network is correct; if it is not, these tools could fail or return inconclusive results. While failure can be useful to prove a problem
exists, it often does not provide enough data to actually diagnose the issue. Protocols such as Link Layer Discovery Protocol exist
to troubleshoot from the data-link layer, but these protocols cannot operate between subnets. This limits their usefulness in tactical
networks. An active networking project known as XPLANE has been developed at the Naval Postgraduate School with these issues in
mind. XPLANE allows network operators to take active measurements in a network without relying on the logical layer. This ability
is extremely important in live tactical networks, particularly when there is significant geographic separation between nodes. Before
XPLANE can be used in tactical networks, important issues around security and the XPLANE’s user interface must be resolved. This
thesis explores the relevance of XPLANE in tactical networks and develops a front-end to XPLANE for tactical network operators.

14. SUBJECT TERMS

Active Networking, Programmable Networks, Network Discovery

15. NUMBER OF
PAGES 9]

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified uu

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18




THIS PAGE INTENTIONALLY LEFT BLANK

i1



Approved for public release; distribution is unlimited

USING ACTIVE NETWORKING TO DETECT AND TROUBLESHOOT ISSUES
IN TACTICAL DATA NETWORKS

Kevin McMullen
Captain, United States Marine Corps
B.S., Penn State University, 2008

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY (COMMAND,
CONTROL, AND COMMUNICATIONS)

from the

NAVAL POSTGRADUATE SCHOOL
June 2014

Author: Kevin McMullen

Approved by: Dennis Volpano
Thesis Co-Advisor

Raymond Buettner
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

Dan Boger
Chair, Department of Information Sciences

il



THIS PAGE INTENTIONALLY LEFT BLANK

v



ABSTRACT

Troubleshooting in tactical data networks is often performed with a common toolset of
programs, such as ping, traceroute, and protocols such as Simple Network Management
Protocol. The assumption with such tools and protocols is that the logical configuration
of the network is correct; if it is not, these tools could fail or return inconclusive results.
While failure can be useful to prove a problem exists, it often does not provide enough
data to actually diagnose the issue. Protocols such as Link Layer Discovery Protocol ex-
ist to troubleshoot from the data-link layer, but these protocols cannot operate between
subnets. This limits their usefulness in tactical networks. An active networking project
known as XPLANE has been developed at the Naval Postgraduate School with these issues
in mind. XPLANE allows network operators to take active measurements in a network
without relying on the logical layer. This ability is extremely important in live tactical
networks, particularly when there is significant geographic separation between nodes. Be-
fore XPLANE can be used in tactical networks, important issues around security and the
XPLANE’s user interface must be resolved. This thesis explores the relevance of XPLANE
in tactical networks and develops a front-end to XPLANE for tactical network operators.
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Executive Summary

The author of this thesis deployed to Operation Enduring Freedom-Afghanistan in 2011-
2012 as the communications officer for 2nd Battalion 11th Marines (2/11). During his time
in Afghanistan, the author gained first-hand experience of managing and troubleshooting
a network geographically dispersed throughout a combat zone. Configuration issues at
remote sites affected network performance, which had impacts on 2/11’s ability to do its
mission. The majority of network issues were due to human error. These issues often
rendered the Internet Protocol (IP) layer of the network, often called the logical layer,
unreliable. The author quickly learned that common network troubleshooting tools such as
ping, traceroute, and Simple Network Management Protocol have limited utility in logically
broken networks. Basic troubleshooting became impossible, and Marines were often sent
to remote sites to physically troubleshoot the network, which wasted valuable time and

manpower.

The common suite of troubleshooting tools and protocols all suffer from the same weak-
ness. They rely on the very thing that is often the source of the problem: the network’s
logical configuration. When a network has logical routing loops, unreliable transmission
paths, and other anomalies, traditional tools become unreliable. Protocols such as Link
Layer Discovery Protocol that operate from the data-link layer are bounded to their local
subnet; they are unable to move between networks and are of limited use. An active net-
working system known as XPLANE has been developed at the Naval Postgraduate School

with these issues in mind.

XPLANE utilizes the concept of active networking. The goal of the active networking
paradigm is to increase capabilities in traditional networks by making them programmable.
XPLANE programs run inside frames in the network. This allows XPLANE programs to
discover and traverse network architecture to diagnose malfunctioning segments. XPLANE
lives at the data-link layer of the network, which allows it to function in networks that are
logically broken. It has unique capabilities that make it well suited for tactical networks.
First, XPLANE programs can relocate throughout the network via the data-link layer. Sec-
ond, programs are able to inject and capture packets in the network. When combined,

these capabilities allow for active measurements to be taken from anywhere in the net-

Xvii



work that has data-link layer connectivity. This feature could have a profound impact on

troubleshooting in geographically dispersed tactical networks.

The problem with XPLANE is one of accessibility to the common network operator. In its
current state, XPLANE consists of the runtime environment and a functional programming
language to create XPLANE applications. There is no user interface or mechanism for
tracking the results of multiple XPLANE programs. This thesis addresses these issues and
creates a practical troubleshooting toolset for tactical networks. First, a comprehensive set
of XPLANE applications known as the factical edge suite has been developed. This suite
of applications can map network topology from scratch and diagnose common network
anomalies. Second, an XPLANE server has been developed that is responsible for launch-
ing XPLANE applications on the network and interpreting their results. The XPLANE
server additionally keeps state of the network as discovered by the tactical edge suite. Fi-
nally, a web-based user interface (Ul) for the XPLANE server has been developed. The
web-based Ul gives network operators a visual representation of the network and highlights

any detected anomalies.

To test the XPLANE-based toolset, a small test network was created. This test network con-
sisted of four routers running the XPLANE software and six client computers which did not
run XPLANE. A number of anomalies were introduced into the network: duplicate and in-
correct IP addresses were used, subnet addresses were entered incorrectly into routers, and
logical routing loops were introduced. Network discovery and follow-on troubleshooting
was first attempted with common troubleshooting tools discussed earlier. Attempts were
then made to diagnose the same problems using the XPLANE-based toolset, and the results
from both were compared. The XPLANE-based toolset outperformed traditional tools for

both network discovery and identifying anomalies.

While this thesis addresses some of the issues that need attention before XPLANE becomes
a practical tool, there remain ways it can still be improved. Some of them are discussed.
They include security, improved packet injection, a more powerful user interface and a

richer tactical edge suite of applications.
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CHAPTER 1.

Introduction

In late 2011, the author of this thesis deployed to Operation Enduring Freedom (OEF) as
the communications officer for 2nd Battalion 11th Marines (2/11). As the only artillery
battalion in Helmand Province, 2/11’s mission was to provide supporting fires to any unit
in the area of operations, which stretched from the Kajaki Dam to the Helmand/Pakistan
border. In order to cover such a large area, 2/11 was segmented into small, platoon-sized el-
ements that were geographically dispersed throughout Helmand Province to provide max-
imum coverage. As a consequence of this dispersion, 2/11 became extremely reliant on
Helmand’s Secret Internet Protocol Router Network (SIPRnet) in order to receive and pro-
cess calls for fire. Most units were well out of radio range from the artillery position that
supported them, and the protocols to have fire missions approved by higher headquarters
often required the use of SIPRnet for coordination.

By the midpoint of his deployment, the author had hit a wall. Nearly every artillery po-
sition in Helmand Province was having serious SIPRnet connectivity issues, which was
causing delays in fire missions. Delays in fire missions meant that Marines in a firefight
on the ground would have to sit there and wait for the support they requested, which was
dangerous and unacceptable. The problem became so bad that meetings were occurring on
a day-to-day basis between the 2/11 Communications section and the Division G-6, which
was the agency responsible for the entire Helmand network. The conclusion of most trou-
bleshooting sessions was the same; the problem was often too difficult to diagnose and fix
from the central hub of the network, Camp Leatherneck, and someone would have to travel
to different forward operating bases (FOBs) and physically troubleshoot the issue. By the
end of the deployment, the author and his Marines had travelled to five different FOBs
throughout Helmand Province to physically troubleshoot issues. These issues almost al-
ways ended up being caused by human error. Other units to include the Division G-6 and
the regimental combat team (RCT) 8 and RCT 6 Communications Section also travelled to

artillery firing positions to troubleshoot the network throughout 2/11’s deployment.

Sending Marines to fix network issues was not a trivial decision. The threat of improvised



explosive devices (IEDs) prevented most personnel from travelling via a ground convoy,
especially for long distances. This made aircraft the primary mode of personnel transporta-
tion across Afghanistan. Unfortunately, travelling by aircraft was also risky, and at best
would take two to four days for a round trip flight, depending on weather. All of these
issues caused the author to re-evaluate the situation. How did it get this bad? How did
sending Marines become the fix to every network issue we experience? The answer was
simple: the network was too dispersed and too complex for the tools available at the time.
The Helmand communications network had become a mesh of interconnected FOBs span-
ning across hundreds of kilometers. The redundant architecture, while tactically sound,
made equipment configurations nearly impossible to troubleshoot from a central location.
Simple tools like ping and traceroute were unable to help, mostly due to the fact that such
tools rely on the very thing that needs to be fixed: the network configuration. More com-
plex tools such as Solar Winds were in use, but unfortunately could only offer a picture of
what they could see from the central hub of the network, Camp Leatherneck, which added
no value. The last bastion of hope, the documentation for the entire Helmand Province net-
work, was only accurate up to late 2011. What the Marines of Helmand Province needed
were tools that would allow them to ask deeper questions about the network. They needed
tools that could utilize the network segments that were working correctly, such as the link-
layer of the various transmissions systems, to gain insight into the malfunctioning upper
layers. Such tools could have prevented the need to send additional Marines into harm’s

way, simply to troubleshoot network segments that were physically out of reach.

1.1 Overview and Problem Statement

Network troubleshooting is often performed with a suite of commonly available tools such
as ping, traceroute, and Simple Network Management Protocol (SNMP). These tools can
be used to perform common tests such as connectivity between nodes, path discovery be-
tween nodes, and in the case of SNMP, statistics and detailed information on node con-
figurations can be queried from a distance. The assumption with all such tools is that the
logical configuration of the network is correct. If it is not, tests performed with these tools
will likely fail. While failure can be useful to prove a problem exists, it often does not

provide enough data to figure out why the problem exists in the first place.

The common weakness in these tools lies at the heart of the original assumption made:



how can tools that rely on the logical layer diagnose issues with the logical layer itself?
The obvious answer is they often cannot. In order to troubleshoot issues in the logical
layer, one has to move “back down” the layers of the network. In the case of the open
systems interconnection (OSI) model, this means having tools that work at layer two, often
called the data link layer. At the data link layer, there are a number of protocols that
aid in network discovery such as the Address Resolution Protocol (ARP) [1], Link Layer
Discovery Protocol (LLDP) [2], and Microsoft’s Link Layer Topology Discovery (LLTD)
[3]. There are also tools such as linkloop which replicate the behavior of the ping utility
[4]. Unfortunately, all of the aforementioned tools and protocols only aid in one aspect
of network troubleshooting: discovery. Additionally, such tests are limited to the local
broadcast domain, which means a node can only discover what it is directly connected
to. This is a limitation of operating at the data link layer; the network is organized into
non-routable segments that are unable to communicate without relying on layer three, the

logical layer.

1.2 Research Questions

The need for tools that operate at the data link layer, yet are able to traverse networks
beyond the local broadcast domain is apparent. Such tools could take advantage of physical
connections that still exist between nodes to troubleshoot logical layer issues. What would
the requirements of such a tool be? With no routing information inherently available at
the data link layer, packets would have to somehow be able to make decisions about their
path as they traverse the network. In other words, packets would need to be active instead
of a collection of passive data. This concept, known as active networking, is not a new
one [5]. The software defined networking (SDN) paradigm, which has gained popularity
in recent years, has its roots in the idea of programmable networks [6]. By extending
the functionality of traditional networks through active networking, new systems can be
developed to manage, troubleshoot, and even reconfigure a running network in ways not

possible today.

One such system, known as XPLANE, is currently in development at the Naval Postgrad-
uate School (NPS) [7]. Once enabled on a network, XPLANE allows for small programs
to be run on the network itself. XPLANE programs have two key capabilities: the abil-

ity to crawl through the network via the data link layer, as well as the ability to inject



and capture packets in the network [7]. Used together, these capabilities allow for active
measurements to be performed from any point in the network that has link-layer connec-
tivity. When considered in the context of tactical data networks, capabilities such as these
have the potential to change the way network troubleshooting is performed. This thesis
will explore the following question: how can active networking systems such as XPLANE

improve troubleshooting in malfunctioning or damaged tactical data networks?

The XPLANE has been demonstrated in laboratory settings, however work remains to make
it a practical tool for troubleshooting tactical networks. First, a set of XPLANE applica-
tions that would aid in troubleshooting common issues in tactical networks needs to be
identified and developed. Second, an interface needs to be developed for launching these
applications and capturing the results. XPLANE applications run asynchronously on the
network; results of any measurements taken are returned back to the node that initiated the
program and then forgotten. It is up to the user to keep state and interpret results in a mean-
ingful way. In order to provide accessibility to the XPLANE results, a visual user interface
needs to be developed. Finally, introducing new software such as XPLANE into a network

presents security risks. What are the security risks, and how will they be mitigated?

To address these issues, a comprehensive set of XPLANE applications known as the facti-
cal edge suite has been developed to map the topology of a network and diagnose common
network anomalies. These applications are managed and launched via a XPLANE server
that is responsible for capturing and interpreting results of programs ran on the network.
The XPLANE server is also responsible for keeping state of the network, which can be
visualized via a web-based user interface (Ul) to the server. The XPLANE web-based
interface displays the state of the network as a graph of interconnected nodes. The inter-
face will also highlight any anomalies detected in the network. Security concerns with
XPLANE have been identified, and access control mechanisms have been incorporated to
ensure that only authorized users are allowed to execute code on the network. Additionally,
the topic of key management has been explored and a model for access control has been

developed.



1.3 Scope of Research

The research conducted in this thesis will be limited to detection and diagnosis of issues
in tactical data networks; no attempt will be made to remotely fix issues diagnosed with
XPLANE. Changing the configuration of live network devices presents its own set of chal-
lenges that include dealing with multiple proprietary interfaces and access control mecha-
nisms [6]. Additionally, XPLANE is limited to observing network behavior by design and
therefore is not capable of modifying network behavior. Possible extensions to this thesis

and the results provided will be discussed in Chapter 7 under future work.

1.4 Thesis Organization

Chapter 2 begins with an overview of the OSI model and basic networking concepts. Com-
mon issues in tactical data networks are presented, and the traditional tools and protocols
used in network troubleshooting are explained, with emphasis on their shortfalls in tacti-
cal environments. Recent advances in network management systems is presented, and the
concept of active networking is explained. XPLANE, an active networking system, is intro-
duced. Active networking research projects that inspired XPLANE’s design are addressed,

and their limitations in tactical environments are discussed.

Chapter 3 presents XPLANE and XPLANE Programming Language (XPL). An overview
of XPLANE and XPL’s capabilities and limitations is given. The mechanics of XPLANE
at the data-link layer of the network is explained. Programming in XPL is addressed, and

code examples are given to demonstrate XPL constructs to the reader.

Chapter 4 presents the tactical edge suite for troubleshooting tactical networks. The design
philosophy for the suite is presented, along with the testing methodology and platforms
used. For each application developed, the rationale behind developing it is explained, as
well as a general description of the algorithm, any assumptions made, and additional con-

cerns.

Chapter 5 presents the design of an XPLANE server, and the design of the web-based UI.

The composition of the server and its integration with the tactical edge suite is presented.
The web-based UI and its interface to the XPLANE server is described.

Chapter 6 presents the results of an assessment made of the utility of the XPLANE server



and the tactical edge suite. The XPLANE server and tactical edge suite are compared with
traditional network tools for troubleshooting networks. The results of this comparison are

given.

Chapter 7 provides some conclusions and addresses future work of both XPLANE itself as

well as the work presented in this thesis.
Appendix A contains all code listings referenced in this thesis.

Appendix B contains the detailed configuration for the network used in Chapter 6.



CHAPTER 2:
Background and Related Work

Computer networks have greatly evolved over the past few decades. The amount of devices
on networks, as well as the functionality of each device, has increased over time [6]. Tradi-
tionally, networks have been configured "by hand," (i.e., manually configured). As of this
writing, this is the standard method of network configuration in the United States Marine
Corps (USMC). Routers, switches, firewalls, and combination devices must be configured
in a logical manner that allows for proper operation of all devices on the network [6]. As the
amount of devices on a network increases, manually managing all devices and their con-
figurations from a central point becomes difficult. In the case of geographically-dispersed
networks in an active combat zone, the idea is untenable. In order to address the issues
of managing complex networks, one has to understand why traditional tools and protocols
have hit the limits of their capabilities, as well as previous and current work related to these

issues.

2.1 OSI Model

The OSI model is a concept used to describe the various layers of computer networks and
how the layers relate to each other [1]. The model breaks networks down in to seven distinct
layers: physical, data link, network, transport, session, presentation, and application [1].
Layers are typically numbered from one to seven starting from the physical layer, and each
layer is defined by the function it performs in the network [8]. This thesis will focus on the

data link layer (layer two) and the network layer (layer three).

2.1.1 Data Link Layer

The function of the data link layer is to provide error-free transmission between adjacent
nodes over the physical layer [8]. Individual data packets are referred to as frames at this
layer [1]. Many different link layer protocols exist; common examples are Point-to-Point
Protocol (PPP), Fiber Distributed Data Interface (FDDI), and the Institute of Electrical and
Electronics Engineers (IEEE) 802.3 standard, more commonly referred to as Ethernet. Eth-

ernet is the most common link layer protocol in use today [1]. As a service, Ethernet offers



flow control, error detection, and error correction on data transmitted between adjacent

nodes [1]. This thesis will focus on using Ethernet as the link layer protocol.

2.1.2 Network Layer

Transmission of data at the link layer is limited to adjacent nodes. In order to route packets
between networks, the link layer forwards the contents of frames to the network layer. This
layer is also commonly referred to as the logical layer. The function of the network layer is
to provide end-to-end delivery of data between nodes of different networks [1]. The most
common network layer protocol is the IP. IP provides end-to-end delivery of datagrams,
i.e. packets, via best effort delivery [1]. This thesis will focus on using IP (version 4) as

the network layer protocol.

2.2 Network Issues that Require Troubleshooting

The logical layer of the network, in particular IP, is necessary to create larger networks
from subnetworks [1]. The ability to route packets from one network to another is what
makes networks such as the Internet possible. In order to route packets efficiently, IP
relies on routing algorithms to calculate paths on its behalf [1]. Routing algorithms in turn
rely on a set of assumptions about the network and how it is configured. One important
assumption is that each node in the network has a unique /P address, which identifies it
within the network. Another assumption is that the routers themselves have been correctly
configured. When these assumptions are proved false, errors will begin to occur in the

network. This thesis will refer to network errors as anomalies.

2.2.1 IP Address Anomalies

IP addresses are used to uniquely identify nodes within a network. When two or more nodes
use the same IP address, this is referred to as duplicate IP addresses within the network.
Duplicate IP addresses present a problem to network devices; how will a decision be made
on where to forward data when there are multiple nodes using the same IP address? The
behavior of network devices in this situation will depend on many factors, such as ARP

table caches.

Along with IP addresses comes the notion of subnets and subnet masks, which are used

to segment networks into distinct sub-networks [1]. Subnet masks have to be correctly



configured on nodes and routers, or else routing algorithms will be unable to make a deter-
mination on which subnetwork a given IP address lives. Subnet masks can be accidentally
misconfigured on routers, end hosts, or both. The effect on the network will depend on
many factors, making misconfigured subnet masks difficult to remotely diagnose and trou-
bleshoot.

2.2.2 Packet Loss

IP is a best effort service, and therefore makes no guarantees that packets will be delivered
to their destination [1]. For reliable end-to-end transmission, protocols such as the Trans-
mission Control Protocol (TCP) are implemented at layer four of the network stack, the
transport layer [1]. Packet loss can occur in a network for a variety of reasons; examples
include transmission errors, routing loops, firewalls, access control list (ACL) restrictions,
and queueing delays in routers. While it is easy to detect packet loss, it is often hard to

single out the source of the error.

2.2.3 Routing Loops

Routing loops occur in networks when packets are unable to leave an infinitely looping path
in the network [9]. Figure 2.1 shows an example of a routing loop that has been formed
between three routers in a network. Routing loops can occur for many different reasons;
examples include incorrectly configured static routes, delays in network convergence, and
general router misconfiguration [9]. As a network anomaly, routing loops have unique side
effects depending on the network topology and configuration, and are therefore hard to
detect in many networks [9].

2.3 Traditional Tools for Troubleshooting

Over time, network administrators have come to rely on a common suite of tools and pro-
tocols to troubleshoot networks. These tools are usually available on all end-user operating
systems as well as network devices such as routers. This section will discuss the more
common tools and protocols to address the shortfalls of each one. This section is not a
comprehensive list of every troubleshooting tool in existence; there are simply too many.
Most if not all are similar enough in function to the tools and protocols that are addressed,

and suffer from the same weaknesses.



A is the default gateway

Forward all traffic from
Cto B

Node B ¢ ) Node C

Figure 2.1: An example of a routing loop between three nodes.

23.1 Ping

The ping utility is a common troubleshooting tool that uses the Internet Control Message
Protocol (ICMP) to test end-to-end connectivity between nodes. It typically comes in the
form of a command-line tool, however the basic ICMP echo request/response mechanism
is often referred to as "pinging a host", regardless of the way the message was sent. A
successful ping implies end-to-end connectivity between two nodes on a network. A failed
ping does not necessarily imply a lack of connectivity between two nodes; it simply in-
dicates there could be an issue. Host-based firewalls, network firewalls, ACL restrictions,
and other factors could all cause ping to fail, even if there is a logical path between the two

nodes in question. This limits ping’s utility in troubleshooting environments.

2.3.2 Traceroute

The traceroute utility is another command-line troubleshooting tool. Traceroute makes use
of the time to live (TTL) field of IP datagrams to trace the route taken to a given destination
[1]. A traceroute analysis of the path between two nodes will yield a list of hops along

the path, the round-trip delay to each hop, and the hostnames and/or IP addresses of each
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node along the path [1]. Just like ping, traceroute utilizes ICMP to send messages. There
are versions that can alternatively use TCP for networks that restrict ICMP messages. The
information provided by traceroute can be very useful in certain troubleshooting situations.
When the logical layer of the network is malfunctioning, the utility of traceroute can vary

widely.

2.3.3 SNMP

SNMP is a network management protocol used to manage devices and query information
from them over a network [1]. SNMP organizes information into objects known as manage-
ment information bases (MIBs). MIBs are used to organize information in a hierarchical
fashion with a well-defined structure that is standard across all devices. In turn, MIBs can
be viewed as a database of configuration parameters and statistics that can be reached from
other nodes in the network [1]. There are standard MIBs for information such as device

configuration, protocol statistics, and routing tables and configurations.

In comparison to command-line utilities such as ping and traceroute, SNMP is an actual
management protocol with much more capability. SNMP has far more utility in certain
troubleshooting situations than ping and traceroute, but unfortunately suffers from the same
weaknesses. SNMP is a network layer (layer three) protocol, and its capability in a mal-

functioning network varies widely.

2.3.4 LLDP, LLTD, and CDP

The IEEE LLDP, Microsoft’s LLTD, and Cisco’s Cisco Discovery Protocol (CDP) are link
layer protocols used by nodes to advertise information to the rest of the local area network
[2,3,10]. This information can include information such as a node’s identity, neighbors,
and services available [2, 3, 10]. The three protocols are similar enough in functionality
to address their capabilities and limitations as a group. While LLDP, CDP, and LLTD are
useful as link layer discovery tools, they are by definition limited to the local broadcast

domain and therefore unable to help in discovering nodes across network boundaries.

2.4 Recent Advances in Network Troubleshooting
In addition to the tools and protocols mentioned, there are a number of successful academic

projects that have created new and more powerful network management and troubleshoot-
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ing capabilities.

2.4.1 Sophia

Sophia is a project aimed at developing a network information plane to collect, store, prop-
agate, and react to observations about the network in a distributed manner [11]. Sophia
is a good example of the overlay network concept, which is a networked system of nodes
within the larger network. Sophia creates an overlay network of distributed sensors that
provide information to a declarative programming environment that evaluates logic state-
ments about the network [11]. Sophia is novel in the fact that administrators can query the
network directly for management information in a declarative manner [11]. In other words,
administrators can ask deep questions about network state, without telling the network how
to find the answer to the query. While Sophia shares similar goals with XPLANE, it relies
on the assumption that the logical layer of the network is functioning correctly, limiting its

usefulness in malfunctioning networks.

2.4.2 NetQuery

NetQuery is a project from Cornell University aimed at implementing a knowledge plane on
large-scale networks such as the Internet [12]. Similar to Sophia, NetQuery aims to dissem-
inate information about network entities to support application-level reasoning. NetQuery
focuses on trusted computing, information attribution, and how to reason about the network
with limited trusted information [12]. NetQuery, like Sophia, makes assumptions on the
correctness of the logical layer of the network, limiting its usefulness in malfunctioning

networks.

2.5 Active Networking

The term active networking refers to a new networking paradigm developed in the 1990s
[5]. The goal of this paradigm was to generate innovation in the design and control of net-
works by making them programmable [6]. By making networks programmable, followers
of the active networking paradigm were looking for novel ways to create new capabilities
and services. Traditional computer networks are not programmable in the classic sense;
devices are individually configured, and there is no environment on the network for code
to be executed within [6]. Active networking changes this by presenting two candidate net-

work programming models; this thesis will focus on the capsule model [6]. In the capsule
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model, packets are a combination of code and data known as capsules [5]. The code in these

capsules can be executed at any node in the network and can modify network behavior [5].

This radical approach to opening up network capabilities may have been ahead of its time;
active networking never experienced widespread adoption beyond the research commu-
nity [6]. A possible reason for this was the lack of a clear demand for such capabilities at
the time [6]. This is no longer the case. In many ways, the active networking community
was attempting to address issues now being addressed by SDN [6]. While there are simi-
larities between SDN and active networking, SDN is primarily concerned with the idea of
separating the control plane of a network from the data plane in order to dynamically adjust
the control plane based on network conditions [6]. In other words, SDN intends to make
networks more dynamic by standardizing the control of network devices such as routers
and switches from a central location. Active networking in the capsule model focuses on
manipulation from the data plane instead; this means that it is the responsibility of the cap-
sules, not the routers, to dynamically adjust to network conditions [6]. The importance of
this distinction in tactical networks will be explained further in Chapter 3. SDN and the
centralization of the control plane will likely have a role in future tactical networks, but it

will not be a focus of this thesis.

The active networking paradigm has manifested itself through a number of academic
projects [6]. XPLANE is only one of them. In order to understand why XPLANE is a
better fit for tactical networks than the others, we need to address prior and related work.

2.5.1 PLAN

Programming Language for Active Networks (PLAN) is an active networking project de-
veloped at the University of Pennsylvania in the late 1990s. The goal of PLAN was to
develop a functional programming interface to the concept of active networking [13]. The
developers of PLAN envisioned using it as a network-level "glue’ language for services
written in other general-purpose languages [13]. Diagnostic programs such as ping and
traceroute can be emulated in PLAN with minimal effort, and more importantly, without
relying in ICMP. This kind of flexibility demonstrates the ability to replace the functional-
ity of certain protocols with simple programming interfaces [13]. The design of XPLANE
was partially inspired by PLAN, but the two platforms differ in an important aspect; PLAN
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lives at the network layer, while XPLANE lives at the data link layer [7, 13]. Addition-
ally, PLAN is not focused on network troubleshooting, and lacks features such as packet

injection to take active network measurements. The PLAN project is no longer maintained.

2.5.2 Sprocket

The Sprocket programming language is a component of the Smart Packets architecture, an
active networking project focused on network monitoring and management [14]. Similar
to PLAN and XPLANE, Smart Packets are active network programs that execute on nodes
as they traverse the network [14]. Sprocket, a programming language based on the syntax
of C, serves as the high-level language that Smart Packets are written in [14]. The de-
sign of XPLANE and the XPL is influenced by Smart Packets and Sprocket [7]. As with
PLAN, Smart Packets operates at the network layer and therefore has limited use in the
types of networks this thesis intends to explore. Smart Packets is not focused on network
troubleshooting, as is the case with PLAN, and similarly lacks active network measurement

capability.

The Active Networking research efforts discussed so far have a common weakness: they
are either unable to function in logically broken networks, or were not specifically designed
to troubleshoot networks. Both of these shortfalls limit the usefulness of such systems in
tactical environments. An active networking system known as XPLANE has been devel-
oped with these issues in mind. The next chapter will introduce XPLANE and give an

overview, with code examples, of XPLANE’s capabilities.
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CHAPTER 3:
XPLANE

XPLANE is an active networking system developed at NPS. The goal of XPLANE is to
develop a system that can perform active measurements for troubleshooting in a network
relying solely on physical connectivity [7]. In other words, XPLANE aims to function cor-
rectly even if the networking is logically broken. This feature, along with programmable
packet injection, make XPLANE suitable for troubleshooting and separate it from other
active networking efforts. This thesis will focus on using XPLANE to diagnose anoma-
lies in networks, and compare the utility of information provided by XPLANE against the

common troubleshooting tools and protocols mentioned earlier.

3.1 Overview

XPLANE can be considered an overlay network that exists just above the data link layer [7].
The system consists of a shim that operat